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We present a new approach to existence and completeness of wave opera- 
tors. We do not  use the subspace of absolute continuity, but rather the 
orthogonal  complement of  the eigenvectors. This is more natural  from the 
physical point of view. We give sufficient conditions for existence and 
completeness of the wave operators. These results are bo th  simpler and 
stronger than those obtained previously. 

1. INTRODUCTION 

In the study of scattering theory one is interested in the limits 

W.W = lim dtHe-~tHoW (1.1) 
t~  :t: oo 

where H, H0 are self-adjoint operators in a Hilbert space ~ '  and tF is an 
element of 3~. It is a simple matter to show that it is unreasonable to expect 
the limits (1.1) to exist when W is an eigenvector of H0. For then the limits 
will exist only if W is also an eigenvector of H corresponding to the same 
eigenvalue. Moreover, mathematicians discovered quite early that it is easier 
to deal with the limits (1.1) if one takes tF to be in the subspace of absolute 
continuity of rio (cf. Kato, 1966a). In particular, one can obtain theorems that 
need not be true otherwise. However, the subspace of absolute continuity has 
no real physical significance and seems artificial from the point of view of 
applications. It is true that, in all cases that have been thoroughly analyzed, 
it results that the subspace of absolute continuity coincides with the orthogonal 
complement of the eigenvectors. However, an abstract theory that is based on 
this premise must verify it in each application or have a gap to fill. It is very 
likely that a situation will arise where the two subspaces do not coincide. 
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The purpose of the present paper is to develop an abstract scattering 
theory that refers to the subspace of continuity (i.e., the orthogonal com- 
plement of the eigenvectors) rather than the subspace of absolute continuity. 
We obtain criteria for the existence and completeness of the wave operators 
(1.1). Our theorems are not much more difficult to state (and prove) than the 
corresponding weaker theorems for the subspace of absolute continuity. Our 
work generalizes that of Agmon (1975), Kuroda (1973), and Schechter (1976). 

In Section 2 we state our main theorems for the case when H is a per- 
turbation of H0 in a generalized sense and the perturbation can be factored. 
The proofs are given in Section 3, where we employ a new general theory. 
For discussions related to this topic we refer to Wilcox (1972), Amrein and 
Georgescu (1973), and Prugovecki (1971). 

2. THE THEORY 

We denote the sets of those ~b for which the limits (1.1) exist by D(W~). 
It is easily checked that they are closed subspaces of ~ .  We take these to be 
the domains of the wave operators W~ defined by (1.1). Let E(A), E0(h) be 
the spectral families of H, Ho, respectively. We define the subspace of con- 
tinuity ~ ( H )  of H as the set of  t hose f  ~ 3r ~ such that (E(h)f, f ) i s  a continuous 
function of A. It is a closed subspace and coincides with the orthogonal 
complement of the subspace spanned by all the eigenvectors of H (cf. Kato, 
1966a). We shall call the wave operators W~ complete if ~r ~ D(W~) 
and their ranges R(W~) coincide. We shall call them strongly complete if, in 
addition, ~ ( H )  c R(W~). The resolvents of H, Ho will be denoted by 
R(z), Ro(z), respectively. 

We consider the case when we can find a Hilbert space ~r and linear 
operators A, B from ~ to JY" such that D(Ho) ~ D(A), D(H) ~ D(B) and 

(u, Hv) = (Hou, v) + (Au, Bv)~, u ~ D(Ho), v ~ D(H) (2.1) 

If  1 ~ is a subset of the real line R and I is an interval, we shall write I c c F 
when I is bounded and i c F. Our first result is the following theorem. 

Theorem 2.1. Assume that (2.1) holds and there is an open set I? c R 
such that CU = R - I ~ is denumerable and 

allARo(s • ia)ll + allBR(s • ia)ll G, s ~ L a > O  
(2.2) 

holds for all I c c F. Then the wave operators are strongly complete. 

The advantage of Theorem 2.1 is that it is symmetric in H and Ho. 
However, it has the disadvantage of having its hypotheses involve R(z). In 
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most applications H is a perturbation of H0 in some sense and it is usually 
very difficult to compute R(z)  or obtain estimates for it. Using methods 
motivated by ideas from Kato and Kuroda (1971), Agmon (1975), Kuroda 
(1973) and Schechter (1976) we formulate a version which is easier to apply 
in such situations. We shall denote the closure of an operator L by [L]. The 
use of  this symbol will imply the assumption that the operator is closable. 

Theorem 2.2. Suppose A, B are closed and there is a number 0 such 
that0~< 0~< 1, 

D(IHo[ ~ = D(IHI ~ = Do c D(A) (2.3) 

D(IHol ~-~ = D(IH] ~-~ = D~_o ~ D(B) (2.4) 

and (2.1) holds. For  Im z # 0 put 

Qo(z) = A[BRo(5)]*, Go(z) = 1 - Qo(z) (2.5) 

Assume that there is a z l  ~ p(Ho) such that ARo(z)[BRo(~O]* is a 
compact operator on ~f  for all nonreal z. Assume further that there 
is an open set P such that CF is denumerable and Go(s +_ ia)--~ 
Go• is norm for each s ~ F, where the Go• are continuous in s. 
Also 

a~ARo(s + ia)ll 2 + allBRo(s +~ ia)I 2 ~ G ,  s e L a  > 0 
(2.6) 

for each I c ~ I'. Assume further that D(B*) is dense and for each 
g ~ N[Go~(S)] there is a function a(8) ~ 0 as 3 ~ 0 such that 

l] [BEo(1)Ro(s + it)]*g II ~ ~(111) (2.7) 

holds when s is the midpoint of I. Finally assume that there is a 
locally bounded function C(s)  in P and functions ~-:(8)~ 0 as 
8 -+ 0 such that 

[[[BE0(1)R0(s + it)l*Aul] 
C ( s ) [ - I ( I Z [ )  + ~2(Is - ~I/IZ[)IMI], u ~ N ( H  - s)  (2.8) 

where ~ is the center of the interval I c c P. Then the wave operators 
are strongly complete. 

The hypotheses of Theorem 2.2 have been verified for the Schr6dinger 
operator with singular potentials (cf. Agmon, 1975; Kuroda, 1973; Schechter, 
1976). 
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3. THE PROOFS 

In proving Theorems 2.1 and 2.2 our starting point will be the following 
theorem, proved in Schechter (1977a, b). We put 

j (z , f ,  g) = Im z(Ro(z)f, [R(z) - Ro(z)]g)fir (3.1) 

lim f j(s + ia, f , g )  ds (3.2) 1,(f, g) 
0 < a " * 0  dJ, 

when the limit exists. We have the following 

Theorem 3.1. Suppose f~  ~ ( H 0 )  and that for each bounded interval 
I there is a dense set S~ c ~ such that J~(f, g) exists for each g s S~. 
Assume also that 

J,(f~,f) ---> 0 as t --> ~ (3.3) 

for each bounded L where ft = e-itZofi T h e n f ~  D(W+). 

An immediate consequence of this is 

Theorem 3.2. Suppose f ~  ~ ( H o )  and there is an open interval A 
such that 

(a) For each interval I c c A there is a dense subset Sz c 
such that Jz(f, g) exists for all g E Sz and 

(b) Ji(Eo(1)f, Eo(I)f~) ---> 0 as t --> ~ (3.4) 

Then Eo(A)f ~ D(W+). 

Proof. I f  I c c A, it is easily seen that 

J,(Eo(I)f, g) = Jz(f, g) (3.5) 

and that 

JK(Eo(I)f, g) = 0, K n 1 = ~ (3.6) 

(cf. Schechter, 1978b). Thus JAEo(I)f, g) exists for every interval L. In 
particular, (3.6) implies 

JK(Eo(I)f, Eo(I)f) = O, K n I = 

Thus 

JL(Eo(I)ft, Eo(I)fi) --~ 0 as t ~ ~ (3.7) 

for any bounded interval L. Thus Eo(I)fE D(W+) by Theorem 3.1. By taking 
a sequence I ,  c ~ A such that In -+ A, we see that Eo(A)f is the limit of  
elements of  D(W+). Since D(W+) is closed, the result follows. �9 
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Theorem 3.3. Suppose (2.1) holds a n d f ~  ,;r Assume that there is 
an open set A such that for each I c = A 

fo e ~lEo(I)f ,  ll ~ at < (3.8) oo 

and 

a~BR(s - ia)H 2 < Cx, s e L  a > 0 (3.9) 

f~_ [lBR(s + ia)E(i)g - g~(s)ll ~ d s ~  0 (3.12) 
oo 

Moreover, (2.1) implies 

R(z) = Ro(z) + [BR(e)]*ARo(z) (3.13) 

Thus 

a fx ([R(z) - Ro(z)]Eo(I)f, R(z)E(l)g) ds 

= a f~ (ARo(z)Eo(1)f, BR(e)R(z)E(i)g) ds 

= - � 8 9  (ARo(z)Eo(l)f, B[R(z) - R(e)]E(i)g) ds 

-+ - � 8 9  (f(s), [g+(s) - g_(s)]) ds as a --> 0 

and 

Then Eo(A)f~ D(W+). 

Proof. It is easily shown that (3.8) implies 

a[]BR(s-  ia)E(i)l] 2 ~ 4C, (3.10) 

(cf. Lavine, 1972). This in turn implies 

f |  [[Be_,tnE(i)gl[ 2 <~ 8Czllg[[ z dt 
- - o o  

(cf. Kato, 1966b). Thus there are functions f(s),  g~(s) in L2(-o% oo, d )  
such that 

f/ HARo(z)Eo(I)f-f(s)[12ds-+O as a---> 0 (3.11) 
c o  



38 Schechter 

On the other hand 

afz I([R(z) - Ro(z)]Eo(I)f, R(z)E(Ci)g) I ds 

~< {a f [l[R(z) - Ro(z)]go(Z)fH ~ ds} 1'2 

�9 a l]R(z)g(ai)gH~ds --->0 asa-->O 

Thus J1(Eo(I)f, g) exists for each g e ~ .  Also 

a f I(Ro(z)Eo(I)ft, [R(z) - Ro(z)]Eo(I)f)[ ds 

= a f~ l(BR(2)Ro(z)go(I)ft, ARo(z)Eo(1)fJ[ ds 

<. f, ~BR(5)Ro(z)Eo(l)ft~ 2 as] 

�9 [f, IAR~ ~ as] "~ 

< [af, f, [lRo(z)Eo(,)f,l] ~ as]' [fo = llAe-'~"oEo(Z)f~ll=d~] "~ 

<. ~'~C2'~[Igo(l)fll IIAEo(I)AII ~ d~] Iz~ 

This implies (3.4). Thus by Theorem 3.2, Eo(Ao)fe D(W+) for each com- 
ponent Ao of A. This implies that Eo(A)fe D(W+). �9 

Now we can give the following. 

Proof of Theorem 2.1. Suppose f e  ~(Ho) .  Inequality (2.2) implies 

al[ARo(z)Eo(I)[[ 2 + aIIBR(z)E(I)II 2 < 8Q,  

for I c c p. This implies 

f /  IlAgo(Z)f, ll ~ < oo ,it 
oo 

a = Ilmz[ r 0 
(3.14) 

(3.15) 

(cf. Kato, 1966b). All of the hypotheses of Theorem 3.3 are satisfied. Thus 
Eo(F)f~ D(W+). Now by hypothesis 

c r  = 0 {~} 
I v = l  
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Thus 

E o ( C F ) / =  ~ [E(hk) - E ( h ~ - ) ] f =  0 

since f e ~f~(Ho). Thus Eo(F)f  = f and we can conclude that f E D(W+). I f  we 
consider the pair - H ,  - H o  in place of  H, Ho, the hypotheses of  Theorem 3.3 
are satisfied as well. T h u s f e  D(W_). Finally we note that the hypotheses of 
Theorem 2.1 are symmetric in H and Ho. Thus the limits 

lim e~tHoe-UUg 
t ~  :t: oo 

exists for each g ~ J/t~ This implies that J(F~(H) c R(W~) .  �9 
In proving Theorem 2.2 we shall use the following lemmas. 

L e m m a  3.4. I f  g ~ N[Go• then there is a w ~ D ( H )  such that 
g = A w  and ( H  - h ) w = 0 .  

Proof. Let E > 0 be given, and let I be an interval c c F with center h 
such that g([I[) < e. Then by (2.7) 

~{B[Ro(A + is) - Ro(h + it)]}*g~ 

< 2E + II{BEo(CI)[Ro(A + is) -- Ro(A + it)]}*gH 

Thus [BRo(A + is)]*g converges to some element w in aft as s -+ 0. Moreover 

A[BRo(A +_ ia)l*g--+g - Go~(A)g = g 

Since A is closed, we see that w e D(A)  and A w  = g. N o w  

([A _+ ia - Holu, [BRo(A + ia)]*g) = (Bu, Aw)  

for all u e D(Ho). Letting a ~ 0 we get 

([A - Ito]u, w) = (Bu, Aw), u ~ D(Ho) ( 3 . 1 6 )  

In particular, we have 

1([i- H0]u, w)l < C l l i -  Holl-~ 

This shows that w E Do. From this we see that (3.16) holds for all u ~ Dl-o .  
In fact, for each such u we can put uk -- E o ( - k ,  k)u. Then u~ ~ D(Ho) and 
uk e D(Ho) and uk ~ u in D~_o. Apply (3.16) to uk and let k -+ ~ .  Now we 
can apply (2.1) to conclude 

([A - H]u, w) = O, u ~ Dl-o  

Since D ( H )  c Dl-o ,  we see that w e E ( H )  and (h - H ) w  = O. �9 

Lemma 3.5. The set of  points A for which N[Go~(A)] r {0} has no 
limit points in F. 
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Proof. Suppose g~ ~ N[Go ~ (Ak)], g~ ~ 0 
h~ ---> A, hk, h ~ F. Then by Lemma 3.4 the hk are eigenvalues of  H with eigen- 
vectors wk satisfying Aw~ = g~ obtained as in the Proof  of  Lemma 3.4. We 
may assume that IIwk[] = 1. Since 

gk = (i + llt~l~ + IHl~ 

we see that the g~ are uniformly bounded in norm. Hence there is a subse- 
quence (also denoted by {gk}) which converges weakly. Put 

K ( z )  = (z  - ZOao(Z l ) -  IARo(z)[BRo( O]* 

where z~ is the point mentioned in the hypotheses. {Note that Go(z~)- ~ = 
1 + A[BR(~I)]*.} Then 

Go(z) = G0(z~)[1 + K(z)] (3.17) 

Thus K(s  + ia) ~ K~(s)  as a -+ 0, where the limit functions are compact and 
depend continuously on s in F. By (3.17) 

gk = [K~(h) - K~(h~)]gk -- K~(h)g~ 

Since gk converges weakly and the K~(s)  are compact and continuous, we see 
that the g~ converge strongly. Let E > 0 be given, and l e t / b e  an interval with 
center ~ containing the Ak in its interior such that C(Ak)~-I(]I[) < E for all k. 
Then take the h k so close to h that C ( h k ) r 2 ( l h  - h~]/]I[) < e for all k. Then we 
have 

[lw; - w ll < [Iwj - [ B R 0 ( a j  + ia)]*g,]l 
+ [[[BR0(hj + i a ) ]*g j -  [BRo(hk _+ ia)]*g~[[ 

+ I[BRo(a  + ia)]*g  - w ll 

The next to the last term is bounded by 

I][BEo(I)Ro(,~j +_ ia)]*gjU + I][BEo(I)Ro(A~ +_ ia)]*g~l[ 
+ H[BEo(CI)Ro(A~ + ia)]*g, - [BEo(CI)Ro(ak + ia)]*gkll 

Letting a -+ 0, we get 

[ [wj -  wk[[ ~< 2e + H[gEo(CI)Ro(hy)]*g s -[BEo(C1)Ro(hk)]*gk~ 

This shows that the {wk} form a Cauchy sequence. But they are orthonomal,  
being eigenvectors of  a self-adjoint operator corresponding to different 
eigenvalues. Thus the ~ cannot converge to a limit in P. �9 

Proof  o f  Theorem 2.2. Let e be the set of  those A ~ F such that N[Go• 
{0}. By Lemma 3.5, e has no limit points in F. Thus F = F - e is open and 

CF is a denumerable set. Next we note that 

6 o ( z ) B R ( z )  = BRo(z)  
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by (3.13). Moreover, by (3.17) 

~o~(~) = Co(z1)[1 + K~(a)] 

Since the K• (A) are compact, we see that Go ~ (A) has a bounded inverse for 
A s ~. Hence (2.6) implies (2.2) for I c ~ I'. We can now apply Theorem 2.1 
to obtain the desired conclusion. �9 
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